Ontwerpproject 2002, RiVo

Matthijs van der Kooij, Barry Nijenhuis, Jeroen Soesbergen, Ardjan Zwartjes
supervisors. Pierre Jansen, Hans Scholten

8th March 2002

Chapter 1

Summary

Rivo is a digital radio recorder and player, supporting time-shifting. We built this as part of the Designpro-
ject 2002. It has been split up into 4 main modules: audio, planner, streamer and interface. We divided the
responsibilities over the participants. This separation of concerns worked out nicely and resulted in product,
we can be satisfied with. Some requirements were dropped, some extra features were added over time. Of
course we had our share of problems but we certainly were able to handle them.

Our final product consists of a server and some clients. The server-software runs on a Linux-computer
with a radio- and soundcard. The planner module controls the radio card, the audio module controls the
soundcard and the buffering, the streamer module sends audio data over a network to the clients and the
interface module handles client commands.

RiVo

Contents

Summary
Introduction
Goal
Requirements

Design
5.1 Interfaces e

Implementation

6.1 Operating SYStem
6.2 Programminglanguage
6.3 Multiprogramming e
6.4 Handlingdebugoutput
6.5 Mainmodule
6.6 RIVOStateS

The audio module

71 Goal . . .
7.2 ReqUIrEMENtS
7.3 DESION . . .
7.3.1 Designofaudiomodule
7.3.2 Design of buffered audio transporters
7.4 Implementation
741 Plugins
742 InputPlugins
7.4.3 OutputPlugins
744 AudioEncoding
745 LiveBuffer
7.4.6 Audiotransporters
7.47 AudioModuleControl
7.4.8 ConfigurationFile
7.5 Problems/Alternatives
7.5.1 Clients are kicked when there is no audio stream
7.5.2 Bugs/Featuresof OSS
7.5.3 timed plugins versus non-timed plugins oL
7.5.4 Limitationsof pluginsystem
7.6 TeSting
7.7 HoOKS/FUtUre
7.7.1 Extraformats for audio-filesondisk oL
7.7.2 Extraaudio sources for the application. oL
7.7.3 Extraoutputplugins
7.7.4 Entirely differentdataformats oo

RiVo

CONTENTS

8 The streamer module

9

8.1
8.2
8.3

8.4

8.5
8.6

8.7

Goal
Requirements

Design

8.3.1 Design decisions
Implementation
8.4.1 Programs used
8.4.2
8.4.3 Problems

8.4.4 Difficulties

Testing.

Future
8.6.1
8.6.2

Future additions

Remaining problems

The planner module

9.1
9.2

9.3
9.4

9.5

9.6
9.7

Goal
Requirements

9.2.1 Scheduling and storing programs
9.2.2 Controlling of the radio device and the audio module
9.2.3 Storing the information about recordings
Design.

Implementation
9.4.1 General implementation

9.42 Conflictchecking

9.4.3 Configuration files
Problems
9.5.1 Periodic programs

Testing.

Planner

10 The control interface module

11

10.1
10.2
10.3

104

10.5
10.6
10.7

Goal
Requirements

Design

10.3.1 Threading design
Implementation
10.4.1 cif init
10.4.2 cif close
10.4.3 The command thread
10.4.4 Client handling
10.4.5 cif read and cif_write
10.4.6
10.4.7
Problems

Testing.

Future

The user interface module

111
11.2
11.3
114

Goal
Requirements

Design...........

Implementation
11.4.1 The web server
11.4.2 CGl-programming language

Implementation

Improvements.
8.6.3 Alternatives

Command handling
The audiodatathread

CONTENTS

12

13

14

15

16

m O O W >

11.4.3 CGl-programinternals

11.4.4 Used libraries .

11.45 Configurationfile

11.4.6 safe_html . . .
11.5 Problems
11.6 Testing.
11.7 Future

The Buffer Control Applet
12.1 Goal
12.2 Requirements
12.3 Design
12.4 Implementation
12.5 Problems
12.6 Testing.
12.7 Future

Testing
Future options

Review

15.1 Requirements review .
15.1.1 Recording . . .
15.1.2 Playing

15.1.3 Listeningtotheradio

15.1.4 User interface

15.1.5 User profiles .
15.2 Hardware requirements
15.3 Irregular period lengths
15.4 PDA rivo control . . .
155 Safety
15.6 Stability

Teamwork

16.1 Our method
16.2 Softwaretools
16.3 Teamsetup
16.4 Conclusion

Test report

Configuration file grammar
Cif protocol

Planning

Installation guide

RiVo

53

54

55

56

Chapter 2

Introduction

This year we were able to participate in the Design project (’Ontwerpproject’ in Dutch). The goal of this
project is to bring theory in to practice and to get familiar with the entire process of creating a software
application. A list of possible assignments was available and we picked a few nice ones from it. In the
end however we took another assignment: ’rivo’. This was a proposal of our accompanists. They gave us
the choice between our primary choice and rivo. Although rivo appeared to be harder and to require more
Linux knowledge we saw more challenge in it.

The name rivo comes from Tivo. Tivo is a commercial digital video recorder, supporting time-shifting,
user-profiles and semi-intelligent automatic recording. Our assignment was to build comparable system for
radio instead of tv. In this report we will describe how we tackled ’the rivo problem’.

Many thank go to the following people:

e Our accompanists: Pierre Jansen and Hans Scholten
e The people behind Icecast, Lame and all the open source tools we used

e Barry’s girlfriend Martine, for checking parts of the report

RiVo

Chapter 3

Goal

To digitally record radio programs and the direct or delayed playing of recordings. Using rivo over a
network is desirable.

RiVo

Chapter 4

Requirements

Derived from the goal we came up with the following requirements:
Recording: The system must be able to record from a desired channel at a desired moment.

Playing: The system must be able to offer recordings and the user must be able to play the recordings at
different locations and different computers. If possible the playing must be able to be paused, rewind
and forwarded.

Listening to the radio: It must be able to listen live to radio broadcasts. It must be possible to temporary
interrupt the broadcast. Then the audio is stored, so that there can be listened later to that audio.
Because of this the broadcast isn’t missed. The playing of the missed part of the broadcast can be
done while the broadcast is still broadcasted. The broadcast is now played with a delay.

User interface: The system shall have a web interface. Because then the user can control the radio with
their favourite browser. On the internet there are online radio guides. The system can parse these
guides and use them, so that the user can easily select his favourite programs.

User profiles: It must be able to make a profile, so that the system can decide for itself which programs it
has to record. This procedure can be complex, but we keep it simple.

RiVo

Chapter 5

Design

After we gathered all the requirements, we started with the top-level design. We did this by specifying
clearly the separate tasks of the system.
In the first design we separated the system into 4 major parts, namely:

1. The streamer, this part would be responsible for the transport of the audio stream over the internet.
2. The audio module, this part would be responsible for the time shifting features.

3. The hardware control, this module would provide a set of functions to control the hardware devices.
4. The user interface, this module would take user commands and control the system according to them.

After we made this design we divided the responsibility for the modules among the group members and
started to do some research on the related topics. Soon we found out that this design had some flaws.
Hardware control for instance was a very small module with very few tasks and another even bigger flaw was
the fact that in this design there was no module responsible for the scheduling of the programs. Therefore
we continued working on the design and came up with something better. The hardware control modules was
removed and its responsibilities were divided among two other modules. The control of the soundcard was
moved to the audio module, and the control of the radio card became a part of a newly added module. This
new module was the planner module. The planner would be responsible for the scheduling of programs.
This new design proved to be a lot better than the first and it also resulted in a equal division of the work.
The final design is shown in figure 7.2.

5.1 Interfaces

After we made this division of work we could finish a big part of the implementation. But when the modules
were nearing completion we had to think about how we were going the join the modules together; we needed
to design interfaces between the modules. For the design of the modules we used the following approach:
At first we made a list of requirements each module had for the other modules, when we had this list we
translated the requirements into function headers which should be used in the code. This approach proved
to work quite well. Most of the interfaces were rather small since the modules had clearly separated tasks,
the interface between the planner and the user interface however proved to be quite extensive, this was not
the result of a flaw in the design but of the fact that a user command almost always has an effect on the
planner.

RiVo

5.1. Interfaces

. X analog audio
RiVo Toplevel Design /X

¥
soundcard tuner
A A

i i

1 1

| i

digital record |
) [frequency

audio| gettings !

i

1

1

digital
audio

< files >

audio target
info

Audio module
(aud)

(pIn)

1
1
1
. 1
audio user planner- planrier

AN atus commands statys

\\ . 1
user aydio—

N
commands
\

Streamer module
(str)

module

(cif)

Planner module

Control-interface

- S,

harddrive

digital planner gnd user
audio audio stajus ~ commands
1
1
i
1
Server side H
H
N \ i
Client side \ 2 !

Client '
Client

Browser

Audio
Application

Figure 5.1: Toplevel design

RiVo

Network

10

Chapter 6

Implementation

After setting up the initial design of rivo, we started looking at the implementation options. This chapter
only describes the top-level implementation issues. Details about modules will be discussed in the following
chapters about the individual modules.

6.1 Operating system

First we decided that the server application should run on a Linux system, because Linux easiest, cheapest
and most adaptable operating system to program in.

6.2 Programming language

We had to decide in which programming language we were going to build the system. There were 3 serious
options: ¢, c++ and java. Java is an interpreted language and therefore it is too slow to build a "real-
time" streaming audio application. Furthermore, Java is not meant to interact directly with hardware. So
there were 2 options left: ¢ and c++. Since we were familiar with ¢ but not with c++, we chose c as our
development language. Another advantage of ¢ (and c++) is that many open-source libraries are available
on the internet. This has saved us lots of time.

6.3 Multiprogramming

From the beginning it was clear that the application needed to be multi-programmed. For multiprogramming
in Linux there are 2 main options: threads and processes. We chose to use threads, because communication
between threads is a lot easier than between processes. The modules in our program need to communicate
a lot with each other, so using processes imposes unnecessary overhead. There are several thread-libraries
available for Linux, but we took pthreads because this is the most common and most portable standard. We
already had some experience with pthreads from the course "Operating systems".

6.4 Handling debug output

One of the first modules we implemented was a debug module. This module handles all debug messages
and logs them to a file. Functions from this module can be called from the other rivo modules. It has a
priority system and timestamps are added to the output. In the first place, we implemented this module for
consistency in the debug output. Otherwise, each module would probably print all its debug output in its
own way to the standard output. This would become a real mess. The debug module solves these problems.

6.5 Main module

The last module we built was the main module. This module has the following functions:

RiVo

6.6. Rivo states 11

It reads the main configuration file.
It handles signals properly.
It starts all the other modules appropriately.

It waits until it receives a stop signal.

o &~ o nhpoE

It closes all modules.

The data in the configuration file is passed on to the corresponding module as it starts.

6.6 Rivo states

Once rivo is running, its functionality follows this state-machine:

RiVo states %

uit live radio

| —Y
A—"
l —Y

wave playing
(84

(S0) (S1)

A— A—" A—

l—Y l—X l—Y
wave pIaymg + reco@ng live rad.lo + recording
recording radio recording di
radio (S5) (S3) radio (S2) radio
< <
I I
wave playing live radio

Figure 6.1: Rivo states

In principle this state machine is the product of 3 parallel state machines:
1. Live radio on/off.

2. wave playing on/off.

3. recording radio on/off.

This would result in a 3 dimensional state space, consisting of 8 states (a cube). However, there is 1
restriction: live radio and wave playing can’t be on at the same time. This eliminates 2 states, resulting in
the state-machine above.

RiVo

12

Chapter 7

The audio module

7.1 Goal

The audio module takes care of the audio streams within the application. It reads input from the radio card,
handles time shifting, writes audio to disk, reads audio from disk and finally sends it to the user.

7.2 Requirements

The requirements on for the audio module can be summarized in these points:
1. The audio module should read audio from the radio card
2. It should handle time shifting

3. It has to write the audio that comes from the radio card to disk in wave-format when the user wants
to

4. It has to play the audio on disk when the user wants to

5. The output has to be sent to the user in 2 ways: through the local speakers or through the network
(mp3-stream)

7.3 Design

7.3.1 Design of audio module
The audio module consists of 8 components:

Master input plugin: This input plugin is the main audio source of the application. The audio stream that
comes from the radio card is handled by this plugin.

Input transporter: This component is an instance of an audio transporter. It takes care of the input gener-
ated by the master input plugin. When necessary, it sends the input to the "disk output plugin” and/or
to the "live buffer".

Disk output plugin: This component writes its input to a specific file on disk.
Disk input plugin: This component reads its output from a specific file on disk.

Live buffer: The live-buffer is the component that takes care of the time shifting of the audio stream. Time
shifting means that there is a certain delay between the input and the output. The delay may be a few
seconds or some hours (it depend on the size of the live-buffer).

A time shift arises when no output is read from the buffer (for example when the output of the main
application is paused), while input continues to be written into the buffer. The input data is then
stored in the buffer, until reading starts again.

RiVo

7.3. Design 13

Audio Module B‘

®
mTmmmmTT T
H 1
Master i Input !
Inpqt i Plugin E("“ -

(Plugin) | ! ~4
D :
ImTTTTTTTT I
! I
! I
Audio | Audio |

I S———

Transporter ! Transporter ! ---

I :
-

A 4 jmmmmmmmmem
Disk ! .
Output i l(zllijtpil:: !

(Plugin) H 9 R
D :

Audio ;
Live
-- Control
Data Buffer e s ontro

! I

D i Input [€-mmmmo
o i Plugin :
(Plugin) | gn-
I :
. ! !

e I Audio {go----m"7
Transporter I rans .
! porter:
! 1
| 1
K Y N P .
! I
Arts Streamer 0Ss ! Output !

Output Output Output | Plu pil; l€----""""
(Plugin) (Plugin) (Plugin) | ugin-—
1
y —

Figure 7.1: Toplevel design

The live buffer automatically stores all recent data that flows through it. The data is kept until the
space is needed for other things, like newer data or a time shift that has to be stored. This feature
enabled the user to rewind in the recent history. This is another situation when a time shift can arise.

Output transporter: This component is an instance of an audio transporter. It reads its input from the
live-buffer or form the disk input plugin. The output transporter sends the audio data to one or more
output plugins.

Output plugins: The output plugins are the plugins that send the audio data to the user.

Control: This component forms the interface to the other modules. It also controls all the other components
in the audio module.

RiVo

7.3. Design 14

7.3.2 Design of buffered audio transporters

Audio Module - Design Audio Transporter

]

Input

(Plugin) Input Plugin

Input
Thread

¥y
fifo buffer

—

Verdeler
(Thread)

Audio Transporter

L’ Y '\
fifo buffer fifo buffer fifo buffer

v v v

Output Output Output
Thread Thread Thread
Y Y Y Output Plugins
Output Output Output
(Plugin 1) (Plugin 2) (Plugin 3)

Figure 7.2: Toplevel design

Audio transporters take care of the transportation of audio between input plugins and output plugins.
Audio transporters have 0 or 1 inputs and 0 or more outputs. When there are not inputs or outputs connected,

RiVo

7.4. Implementation 15

the audio transporter actually does nothing and waits until an input or output plugin is connected.

When there is an input plugin connected and there are 1 or more output plugins connected, the audio
transporter reads data from the input plugin and sends the data to all output plugins. The block size of the
audio transporter is run-time adaptable.

If an output plugin requires extra buffering or a special block size (for example the stream output plugin),
the audio transporter can be configured to meet these requirements: it will create a buffer (the size can be
configured dynamically) and it will start an extra thread that reads from the buffer and writes to the output
plugin. The size of the blocks that will be read from the buffer and written to the output plugin can also be
configured dynamically. The audio plugin will then write the audio data into the buffer instead of writing it
to the output plugin directly.

This mechanism of buffering is also available for input plugins. For example: when input is read from
the live-buffer, buffering is needed, because a hard disk can’t always be expected to deliver the audio data
real-time.

7.4 Implementation

7.4.1 Plugins

Plugins are shared objects (.so files) that are compiled separately form the main application. In run-time,
they are dynamically loaded into the application.

The advantage of a plugin system like this is that plugins can be added to the system while no recompi-
lation of the application is required, so it makes it more modular and more adaptable.

There are 2 kinds of plugins:

1. Input Plugins
2. Output Plugins

7.4.2 Input Plugins

The task of an input plugin is to provide audio data. It has 3 functions: init, read, close. The meaning of
init and close are trivial. The function read reads blocks of data and passes them to the entity that called the
read function. An input plugin may have timing, but this is not always the case.

In the current system, the following input plugins are used:

OSS input plugin: This plugin reads input from OSS. OSS is the standard for the audio-drivers in Linux.
This plugin sets up the Linux audio device by setting up the sampling rate (22050Hz/44100Hz), the
number of channels (mono/stereo) and the number of bits the audio is sampled on (8/16). Then it
opens the Linux audio device (/dev/dsp) for reading only. If the mixer is set up properly, the audio
that comes in on the line-in of the soundcard is read. The data that is read from this plugin comes
directly from the device. This plugin has timing, because the oss kernel drivers are timed.

In the current configuration, this plugin is the master input plugin.
Wave input plugin: This plugin opens a specified wave-file and reads the audio-data from this file. This
plugin does not have timing. In this version of rivo, this is the disk input plugin.

Both the wave input and the wave output plugin internally use libaudiofile. This library takes care
of reading/writing form/to wave files. There were some alternatives: libsndfile and sndlib. We chose
libaudiofile after all because this lib is ported from Irix by Sgi itself and because this lib is used in
some large open source projects: EsounD,Alsaplayer and Arts.

Null input plugin: This plugin actually does nothing: when read it called, it immediately return an array
with zeros. An array of zeros is silence. Of course this plugin has no timing.

RiVo

7.4. Implementation 16

7.4.3 Output Plugins

The task of an output plugin is to accept audio data (and do something meaningful with it). An output
plugin has 3 functions: init, write, close. The write function takes a block of audio data and writes it to
the target. The meaning of the functions init and close hopefully will be clear. Some output plugins have
timing, some don’t.

In the current version of rivo, these output plugins are present:

OSS output plugin: This plugin writes output to OSS. It sets up the audio device (/dev/dsp) and opens it
for writing only. All data that is written to this plugin is directly written to the device. This plugin
has timing.

Stream output plugin: This plugin is the streamer module that is covered by another chapter. This output
plugin has timing, too.

Wave output plugin: This plugin opens a specified file for writing (or creates a new one if necessary). All
audio that is written to this plugin is directly written to the wave file. In the current configuration, this
plugin is the disk output plugin. The wave output plugin doesn’t have timing.

Arts output plugin: This plugin writes all data it receives to the arts deamon. Arts is the audio-server of
kde2. This plugin has timing.

Null output plugin: This plugin behaves live a black hole: anything that comes near disappears into it and
is never seen again. Black holes don’t have timing, so this plugin doesn’t either.

7.4.4 Audio Encoding

Internally, the audio module always works with the same audio format: pcm (raw). It can switch between
22050Hz/44100Hz, mono/stereo, 8bits/16bits. So virtually all pcm formats are supported. Only 48kHz pcm
is not supported. All input plugins generate audio in the pcm format and all output plugins accept audio in
the pcm format.

7.45 Live Buffer

The live buffer is in fact a synchronized buffer that stores its data on the hard disk. When the live-buffer is
initialised, it receives the name of a file that it can use to store the data. The size of the file is automatically
detected. It is the responsibility of the user to create a file that is large enough.

There are 2 threads involved in the live-buffer. One thread writes data into the live-buffer, the other
thread reads data from the live-buffer.

If the buffer is completely filled (so the time shift is at its maximum size) and the writing thread wants
to write audio into the buffer, the data is thrown away and the write function immediately returns. So the
write call for the live-buffer is not blocking.

There were 3 alternatives for handling the audio that is written when the

buffer is completely filled:

1. make the write call blocking

This is the common way to implement a bounded buffer, but for this application it is not useful,
because when the writing thread is blocked, it can’t read from the audio device, so the buffer of the
audio device will be full in some time. When the buffer of the audio device is full, the Linux kernel
will throw away any new audio data. So after all new audio will be lost anyway.

Another disadvantage of the blocking write call is that the writing thread gets blocked, even when it
doing something useful besides writing in the live-buffer. For example: there are situations when the
input audio transporter is writing in both the live-buffer and the disk-out plugin. If the threads gets
blocked by a write call to the live-buffer, the writing to the disk-out plugin also stops. Of course, this
is not desirable

2. don’t make write call blocking but overwrite the oldest data in buffer

With this alternative the writing thread doesn’t get blocked so it will never stop writing to disk. But
when the buffer is completely filled, the time shift takes up all the buffer, because the user pressed the

RiVo

7.4. Implementation 17

pause button in the past. When you overwrite the oldest data in the buffer, you overwrite the audio
that was recorded just after the user pressed the pause button, but probably that was important to the
user (why else would he press the pause button?). Probably the audio that is recorded at this time is
less important to the user than the audio that was recorded just after he pressed the pause button. So
overwriting is not an option.

3. throw away any audio that doesn’t fit in the buffer

This alternative has the same disadvantage as the first alternative (audio gets lost), but it solves the
problems of the first 2 alternatives. We chose this alternative for the implementation of the live-buffer.

If the buffer is empty, the reading thread is blocked until enough data is available. There were 2 alter-
natives for handling read calls when the buffer is empty:

1. return a block of silence (=zeros)

Returning a block of silence might be an option when the it is possible that the reading thread calls
the read function when the buffer is empty and when it is not guaranteed that new data will be written
in the buffer in a short time. However, the control component guarantees that when a thread is reading
from the buffer, another thread is writing in it.

2. block the reading thread until enough data is available

In theory it shouldn’t make a difference if the read function blocks the reading thread or not when the
buffer is not entirely empty. In practice it sometimes does.

For example: when the buffer is almost empty and a output plugin gets connected to the output
transporter that has a large internal buffer (for example the stream output), the buffer will be filled
at a very high speed and if the buffer of that output plugin is bigger than the amount of data in the
live-buffer, then the rest of the buffer will be filled with silence. This causes hicks in the audio stream.

Because the control component guarantees that when a thread is reading from the live-buffer, another
thread is writing into it, it is safe the make the read function call blocking. There will always be audio
available in a relatively short time. In practice we experienced that this solution doesn’t cause any
hicks at all.

7.4.6 Audio transporters

In the design section the design of the audio transporters is explained, so in this section some interesting
implementation issues of the audio transporters will be covered.

The audio transporters treats every input source or output target as a plugin. This is done by calling
function pointers to the read and write function of the inputs and outputs. When for example the live-
buffer is added to the input transporter as an output, the pointer to the write function is passed to the audio
transporter. This way the audio transporter can’t see the difference between a plugin and the live buffer and
this makes the audio-transporters more flexible.

If for some reason an input or an output needs extra buffering (live-buffer), or a special block size
(stream-out), then the only thing you have to do is to change the configuration file an then the audio trans-
porter puts an extra buffer in between. We implemented this buffer ourselves and named it "universal
buffer”. This universal buffer is just a bounded buffer (like a pipe) but it can be initialised at any size you
like. Its implementation is very efficient because it uses memcpy.

7.4.7 Audio Module Control

The control component forms the interface of the audio module to the other modules. It is completely
synchronized. It receives commands from the cif module and from the pln module.

init(): This function initialises the audio module. It reads the configuration file, it loads and initialises the
master input plugin, it loads the disk in and disk out plugins, it initialises the audio transporters, it
connects the null output plugin to the input transporter and it connects the null input plugin to the
output transporter.

close(): This function stops all threads, it closes and unloads all plugins.

RiVo

7.5. Problems/Alternatives 18

start_recording(char *filename): This function starts writing the input to a file. It initialised the disk
out plugin and connects it to the input transporter.

stop_recording(): This function stops recording. It disconnects the disk out plugin from the input trans-
porter and closes it.

start_playing(char *filename): This function starts playing from a file. If the system is live, live-
listening is stopped first. Then the disk in plugin is initialised and connected to the output transporter,
but first it disconnects the null input plugin from the output transporter.

stop_playing(): This function stops playing from a file. First, it disconnects the disk in plugin from the
output transporter. Then it closes the disk in plugin and it reconnects the null input plugin to the
output transporter.

start_live(): This function starts live-listening. First it disconnects the null input plugin from the output
transporter. Then is connects the live-buffer to the input transporter and the output transporter.

stop_live(): This function stops live-listening. It disconnects the live-buffer from the input transporter and
from the output transporter. It also empties the live-buffer. It also reconnects the null input plugin to
the output transporter.

pause(): This function removes the current input of the output transporter and connects the null input
plugin to the output transporter.

resume(): This function removes the null input plugin from the output transporter and reconnects the orig-
inal input.

7.4.8 Configuration File

Many properties of the audio module can be adapted by changing the configuration file. After the changes
are made a restart of the program is needed.

For each inputplugin, there is a section in the configuration file. The buffer size and block size can be
changed here. When the buffer size is 0, there is no extra buffering and the value for block size is ignored.

For each output plugin there is a section in the configuration file. The fields have the same meaning as
for the input plugins. If the field selectable=1, the output plugin can be used as main output plugin (in the
current version, there are 3 man output plugins: oss_out, stream_out and arts_out). If the field selectable=0,
then the output plugin can’t be used as main output plugin.

7.5 Problems/Alternatives

7.5.1 Clients are kicked when there is no audio stream

When clients are connected to the Icecast server and the encoder stops sending data, the clients are kicked.
Originally, the audio module stopped sending data to the output plugin when it was paused or when the
system was idle. We solved this problem with the "null input plugin”. This plugin is always connected,
unless there is actually read audio to send (when it is playing from a file or when live-listening is enabled).

7.5.2 Bugs/Features of OSS
Full duplex soundcard drivers

When we tried to use both the oss input and the oss output plugins on an computer with an SoundBlaster
AWEG64. This didn’t work, because for this soundcard the old SoundBlaster 16 drivers were used, and these
drivers only support full-duplex sound processing when the device-file is opened as read/write.

In our modular system, oss input and oss output are handled by different plugins, so we have to open
the device 2 times: one time as read-only and one time as write-only. This was not possible with the old
SoundBlaster 16 drivers, so a new SoundBlaster 128 PCI (chipset ES1371) was installed. The drivers for
this card allow a device to be opened twice, so our problem was solved.

With the current plugin system that strictly separates the input and output plugins, we couldn’t have
solved this problem in software. A more sophisticated plugin system is needed for this.

RiVo

7.5. Problems/Alternatives 19

Strange buffering

Another problem we experienced with the oss kernel drivers is that the buffer in the audio device sometimes
contains old data. For example: when you start listening to the radio, then you stop listening, then you wait
a while and then you start listening to the radio again. Then you first hear about half a second of the music
that was on the radio when you stopped listening and then the music that currently is on the radio.

This is caused by the buffer of the device file that is not updated when the data is not read. When we
stop listening to the radio, the oss input plugin is not closed, this means that all the time the file is opened
and apparently the audio drivers of the Linux kernel don’t overwrite or flush the buffer.

We fixed/worked around this problem by adding a null output plugin that is always connected to the
input transporter. What happens then is that even when you are not listening to the radio, the radio input is
continuously read (and thrown away in the null output plugin). Due to this the buffer of the audio device is
always up to date. This workaround takes approximately 0.1

7.5.3 timed plugins versus non-timed plugins

Some plugins have timing. This means that they won’t accept/produce data faster than it can be put through
your speakers. Some plugins don’t have timing, so they accept or produce data as fast as they can.

In the audio module, both timed and non-timed plugins are treated in the same way. Normally this
causes no problems, but when new plugins are added to the system you have to watch out a little, because
when the input and all the outputs of an audio transporter are non-timed, things go wrong.

For example: when an audio transporter has an input that is timed and it only had non-timed outputs,
then the outputs are indirectly timed by the timed input. The audio data just won’t flow faster, because the
input won’t produce the audio faster.

Another example: when an audio transporter has an input that is not timed and it has some outputs that
are not timed and one output that actually is timed. Now the data flow in this transporter is indirectly timed
by the one output that has timing. The input and all the outputs can produce/accept the data faster, but that
one output plugin with timing slows up the audio stream, with the result that the whole audio stream is
timed.

Things go wrong when an audio transporter has no timed inputs or outputs at all. Then the input
produces audio as fast as it can, the outputs accept data as fast as they can, the processor use will go to 100

A solution for this problem is to give audio transporters a timing mechanism for themselves. Usually
this is overkill, because most plugins have timing for themselves. It also makes the audio module less
adaptable, because when the audio transporters have timing, they have to be aware of what type of data they
are transporting. Another solution is to add timing to every plugin that doesn’t have timing, or at least to
the plugins where timing is needed.

In the current implementation of rivo, we have not adopted any of these solutions. We rely on the timing
of the input and output plugins for the timing of the entire audio module. This works, because the master
input plugin (oss input) is timed and all the main output plugins (oss-out, arts-out, stream-out) are timed.
Because of this the input audio transporter and the output audio transporter always are timed.

7.5.4 Limitations of plugin system

The current plugin system has some limitations:

fixed number of arguments for initialisation of plugins

When a plugin is initialised, it takes a fixed number of arguments, even when the plugin doesn’t need all
arguments. For example: the stream output plugin ignores the target initialisation argument, but it gets it
anyway, because there is an uniform interface for all output plugins. Actually there are some plugins that
need the target argument, so all plugins get this argument.

On the other side, some plugins have parameters that are not passed at initialisation time, so these
parameters are compiled into the code. For example: the bit rate of the mp3-stream could be run-time
adaptable, but this parameter is not part of the uniform interface for the output plugins, so this option is not
passed when the stream output plugin is initialised.

To solve this problem, either every output plugin would need to read its own configuration file or the
number of arguments would have to be variable. The first solution is not a very nice one, because every

RiVo

7.6. Testing 20

plugin would need its own configuration file parser and all those small configuration files would turn your
hard disk into a mess.

The second solution would make the plugin loading and initialisation routines complicated, but the
plugins remain very simple. Other projects handle plugin/driver arguments in a similar way, for example
the XFree86 project.

separation between input and output plugins

In the current plugin handling there is a strict separation between input plugins and output plugins. This has
one very important advantage: it keeps the plugin handling and the plugins themselves very simple. It also
has a great disadvantage: plugins can’t be input-plugin and output-plugin at the same time. This implies
that for example the live-buffer couldn’t be implemented as a plugin. Of course, this limits the adaptability
of the audio module.

The obvious solution for this problem is to build a plugins system that also supports input/output plugins.
Or maybe even plugins with multiple inputs or outputs might be useful, for example if you want to build
mixers or faders. But before we start with a project like that, we might want to take a look at projects like
Avrtsbuilder or Glame, just to be sure that we aren’t building something that has been made before.

With a plugins system that supports input/output plugins, it would have been possible to make a com-
bined input/output plugin for the old SoundBlaster 16 kernel drivers, so that we could work around the
limited full-duplex support of these drivers.

no status information can be transferred

In the current plugin system, no status information can be transferred from the plugins to the system. For
example: when the system calls read on a plugin, the plugin returns the data or - when no data is available
- it blocks the thread until enough data is available. Output plugins behave in a similar way: when a write
is called and there is no space available to store the data, the thread is blocked until the space is available.

As long as input plugins always have data (or when they will have data in a relatively short period) and
output plugins always have space (or when they will have space in a relatively short period), this is not a
problem. As long as plugins are guaranteed to return form read or write calls (how long it takes actually
doesn’t matter), there are no problems. But when plugins cannot guarantee that they will return (how long
it takes doesn’t matter) from a read or write call, problems arise.

For example: if the live-buffer were just a synchronized bounded disk buffer (actually it is not, but let’s
say it is) and there were no data in the buffer and a read was called, this function call would block until
there is enough data to return. If no other thread is writing into the live-buffer, the reading thread would
be blocked forever. To itself, this is not that bad (there is no audio data anyway so why should the not be
blocked..), but when the thread has to be destroyed real problems (deadlocks) arise.

There is an obvious solution to this problem: use asynchronous thread cancellation. But using asyn-
chronous thread cancellation would require that every function that could be called by a thread has a cleanup
handler. But cleanup handling in combination with synchronization is really very hard to implement (if pos-
sible at all). This would result in more complicated plugins and that is not desirable.

Another solution is to block threads in the audio-transporters instead of in the plugins. This would make
life really easy: no cleanup handlers would be needed and threads can be unblocked whenever we like to
(for example when they need to be destroyed). However, this solution requires that the audio-transporters
can ask the plugins for their status (for example they need to know how much data is available in input
plugins). A mechanism for notifying the audio-transporters (for example when new data is available) would
be needed too.

7.6 Testing

In order to test the audio module, we wrote a special program called aud_test. This program used a primitive
keyboard-interface, but it was functional enough to discover problems/bugs/deadlocks etc. Because the
audio-module depends on no other modules, testing was pretty straightforward and bugs were usually easy
located.

RiVo

7.7. Hooks/Future 21

7.7 HooksFuture

During design and implementation, we tried to keep the design and the implementation as flexible and
adaptable as possible. The result is that in the future, without too much effort, some features can be added:

7.7.1 Extra formats for audio-files on disk

Currently all files are saved in the pcm-wave format. This format has no compression. If you would like
to save the files in a compressed format, this is possible. Just write 2 plugins (one for input and one for
output), change the configuration file and it works.

7.7.2 Extra audio sources for the application

At this time, the program takes its input from the soundcard. However, if in the future a different audio-
source is needed, this is possible, because the input from the soundcard is read by a plugin.

7.7.3 Extra output plugins

In this version, there are 3 main output plugins: oss-out, arts-out and stream-out. If in the future another
output plugin is needed (for example an ogg-vorbis streamer), this is easy: just write a plugin, add a section
to the configuration file and rivo can send ogg-vorbis streams.

7.7.4 Entirely different data formats

Rivo was originally designed and implemented for radio. However, people seem to be interested in a version

that supports television or even all types of streaming media. This feature is not easy to implement, but we

think it can be done.

The live-buffer and audio transporter components don’t know what type of data they are buffering/transporting.

They don’t see the difference between a pcm-audio stream or a mpg2-video stream. The only components

that are aware of the type of data are the plugins and the control component (that controls the audio module

and that forms the interface to the other modules). These components would need to be re-written. This is

a large job, which certainly is not easy, but, as said before, it can be done.

RiVo

22

Chapter 8

The streamer module

8.1 Goal

Multiple clients must be able to listen to rivo at the same time over a network.

8.2 Requirements

1. Multiple clients must be able to listen to the radio output at the same time.

2. The audio must be presented in mp3 data to the clients.

8.3 Design

The streamer gets wave audio from the audio module and gives it in the right format to a mp3 encoder.
The encoder returns mp3 data to the module. After the encoding, the streamer module sends the data to a
program that handles the streaming of the mp3 audio. Multiple clients can connect to that service.

8.3.1 Design decisions

There were two major design decisions made for the streamer module: The decision of an own streamer vs.
icecast and the decision about the usage of 8 bits audio data.

Own streamer vs. icecast: At the beginning of the project we thought of making an own server instead
of using icecast. This idea came partially because we thought that icecast decodes and re-encodes
mp3, so that icecast was very inefficient. But after some research we concluded that icecast didn’t
decode and re-encode the mp3 data. An own streamer also had some problems/difficulties. The
greatest difficulties were that the protocol icecast uses (the icy protocol) was nowhere to find and that
it was more work than we thought (handling things like sending and timing). With the knowledge
that icecast and libshout could do the job well and in a shorter period, we decided to make an icecast
version first (with icecast and libshout) and after that we could consider making our own streamer.
When the icecast version was almost ready and time was short, we decided to use the icecast version,
because we had not much time left and icecast handles the communication well.

8 Bits audio data: We began with the idea of making a streamer module that could handle 8 bits and 16
bits audio. The developing and testing of the streamer module and audio module made clear that 8
bit sound was really bad. With that conclusion we decided on February the 25th 2002 that we didn’t
pay attention to 8 bits audio anymore. The option remained in the program, but not optimised.

RiVo

8.4. Implementation 23

Streamer Module B‘

aud

Y

str plugin liblame

icecast

Network

Client

Audio
Application

Figure 8.1: Streamer design

8.4 Implementation

8.4.1 Programs used

The streamer module uses three external (developed by other people) applications. These are: icecast,
libshout and LAME. Icecast is an application that handles the multicasting over a network (i.e. internet).
Because of icecast the module can send data to multiple clients. Libshout is a library that handles the
communication between the module and icecast. This library is needed to get real-time streaming working.
Icecast itself can only handle files, but libshout has the ability to send buffers of mp3 data to icecast. LAME
is an application that encodes pcm (raw) or wave audio data into mp3 data. The streamer module uses
libLAME, that is the library function of LAME without the front-end application. This library gets one or
two buffers of pcm data and converts it into mp3 data and puts it into a buffer.

RiVo

8.4. Implementation 24

8.4.2 Implementation

The streamer module is divided into 3 subsections (like all plugins): initialisation, write, close. The imple-
mentations will be explained in that order.

initialisation: In this stage of the plugin the connection to icecast is initialised using libshout. The module
also initialises LAME at this section. It sets the quality, mode, compression and sample rate of
LAME. These settings are set according to the given (by the audio module) sample rate, number of
channels and number of bits. Other settings of LAME are set to a default value chosen by LAME.
After this procedure the module is ready to write to icecast.

Write: When the audio module calls the write function of the streamer module, the given buffer is copied
to a temporary buffer. After that the temporary buffer is split into pieces of short integer buffers.
Short int’s are used, because LAME wants short ints and the audio is 16 bits at most (length of a short
int). The procedure of splitting goes like this: The temporary buffer is a buffer of bytes. This buffer
is chopped in pieces according to the number of channels and the number of bits used for the data.
There are four options.

DIVIDING THE TEMPBUFFER OF THE STREAM MODULE

3 BITS, 1 CHANNEL 8 BITS, 2 CHANNELS
Tempbuffer(bytes) A|C|E |G

A|/B|C|D|E|F|G|H //I'\

L L1 alelc|o|e|F]e]H

A|lB|c|D|E|F|[G|H D e

Buffer1[0]

l——
te—
l——

Buffer1[0] (short ints) B | D|F | H| Buffer1[1]
The elements are shifted 8 positions fo the | Same as 1 channel,
left, so that the audio is Joudest. but now divided info 2 buffers
16 BITS, 1 CHANNEL 16 BITS, 2 CHANNELS

s« @ s | e | e | w B+A | F+E | Buffer1[0]

><- ><. >< >< A{D E><F G| H
B¢+A D+C F+E | H+G >< /

B is puf af first in the entry and shiffed & D+C H+G Buffer1[1]
Positions to the left, after that A is added.
All the entries are filled with that principle Same as 1 channel, but now divided.

Figure 8.2: Dividing the buffer

1. 8 Bits and one channel: one element from the temporary buffer is one element in the buffer to be
send to LAME. Because 8 bits are one byte and there is only one channel, therefore one sample
of audio is 1 byte long.

2. 8 Bits and two channels: one element of the 2 buffers given to LAME represents two elements
in the temporary buffer.

3. 16 Bits and one channel: two elements of the temporary buffer represents one element at the
LAME buffer (1 buffer).

4. 16 Bits and two channels: four element of the temporary buffer represents one element at each
LAME buffer (2 buffers).

RiVo

8.5. Testing 25

Further explanation about the separation of the data can be found in 8.2. After the dividing into
one or two buffers for LAME, the buffer(s) is/are send to LAME, that encodes the buffer(s). Next
the internal mp3 buffer is flushed into the mp3 buffer used by the module. If the encoding is done
correctly, the data is send to icecast using libshout. Finally the shout connection will wait until the
mp3 data is played (a prediction). This function handles the timing for the connection to icecast.

Close: All the buffers of LAME are released and the connection to icecast with libshout is closed.

8.4.3 Problems

One of the problems encountered during the construction was the separation of the temporary buffer. At
first it wasn’t plain what the size of the parts were, i.e. which channel comes first and which byte of a 16
bits sample comes first. But pretty soon, after a conversation, it was clear how the audio data was send. And
when it was clear what was send, it wasn’t very difficult. More problems didn’t occur while developing the
module. Most of the problems occurred during the combining of the modules. This is evident, because the
streamer module couldn’t be tested thoroughly without the audio module, as the module strongly depends
on the audio module.

8.4.4 Difficulties

A difficulty while developing the module was the communication between the module and the used appli-
cations. It wasn’t very difficult, but there was much to read. The 3 used programs (LAME, icecast and
libshout) had to be gone through thoroughly before they could be used. Another difficulty was to separate
the buffer into appropriate pieces for LAME. Where the temporary audio buffer has to be cut, depends on
the number of bits and the number of channels. A further explanation is available in 8.2.

8.5 Testing

Testing the module isolated from the rest of the program wasn’t feasible. The only 2 tests that could be
run were compiling the source and testing the libshout connected to icecast. Practically all the testing was
done in cooperation with the audio module, because the streamer module can’t function without the audio
module. Testing with the audio module began with the streaming of a wave file and without a live buffer.
These settings were the only settings available at that time and that part worked well. The initialisation
phase was tested first. After that part worked ok, the testing of the writing began. The first tests were
related to the encoding of the audio into mp3 data. The mp3 data wasn’t send to icecast at that point of
testing, but was written to a file. At first there came out noise.

After some testing the conclusion was drawn that the 2 bytes of one sample for 16 bits and 2 channels
had to be swapped. Instead of putting the first before the last, it had to be done the other way. This is
because the computer works little endian. This fact is well known, but not intuitive, therefore the mistake
was easily made. When there was good music from the mp3 file, the connection to icecast had to be tested.
That test went well. The data was correctly send to icecast. After that, the testing was paused for a short
time. Because the audio module wasn’t ready to test the streaming of audio data.

When the real time streaming of audio data could be tested a problem occurred. The audio came with
bleeps and silences, where it wasn’t intended. This problem was solved for a short time: We tuned the
block sizes of the output plugin and such. But when we used another configuration (another number of
bites, channels etc.) the problem occurred again. After some tuning of the block size again, everything
worked. We concluded from this incident that there was something wrong with the block size. And we
were right, the block sizes of the buffers weren’t guaranteed. When that was fixed, the audio was played
correct.

8.6 Future

8.6.1 Future additions

Things that can be added to this module in the future are:

RiVo

8.7. Remaining problems 26

e Storing the mp3 data in files

e Streaming of audio in ogg format (lame supports ogg encoding, still beta)

8.6.2 Improvements

Things that can be improved in the future are that several options are stored in a configfile and/or given to
the module by the audio module. If these options are set in a configfile the user can modulate the stream
much easier. Options that are convenient to store in a configfile are:

e The compression rate: this option regulates the kilo bits per second (kbps). At this time the kbps is
set to 128 in all modes (all varieties of channels and sample rates).

e The quality of the stream: Now the quality can only be changed by editing the code.
e \ariable Bit Rate: VBR is an option for LAME to use a variable bit rate. Now VBR is not used,

because the computer can’t handle that, but the option exists in the header file.

8.6.3 Alternatives

There was only one alternative for the choices made for the module: constructing an own streamer instead
of using an external program (icecast). Arguments in favour of an own streamer are:

e It’s your own source, so that you know what happens.
e You can optimise it to your own purpose.
Arguments for using external programs are:
e You don’t have to invent the wheel again.
e |t does what we need and good.
e Time wasn’t on our hands.

Time was a great aspect and the external program (icecast) worked good, so we chose for the external
program.

8.7 Remaining problems

A remaining problem in the streamer module is that the audio stream malfunctions after a long time. This
problem occurs while doing this procedure: First the streamer plugin is enabled, then the clients connect
and after that the radio is set to a channel. The other scenarios work well. This problem is not solved,
because the problem lies within LAME. We think that when LAME initialises during a silence (self made)
the audio properties are set incorrectly. But if you disable the output plugin and enable the output plugin,
the stream is correctly again. So when that problem occurs you only have to disable and enable again and
your problems are gone

RiVo

27

Chapter 9

The planner module

9.1 Goal

The goal of the planner module is to take care of 3 major tasks:
1. To schedule and store user added programs (both one time and repeating programs).
2. To control the radio thread and the audio module according to the user added programs.

3. Store information about the audio recordings resulting from the users programs.

9.2 Requirements

From these 3 main tasks a lot of sub tasks can be derived, these sub tasks are given per major task:

9.2.1 Scheduling and storing programs
1. To be useful there must be a way to add programs.
2. There must be a way to remove programs.

3. To guarantee the feasibility of the program there must be a function to check conflicts between newly
added programs and already scheduled programs.

4. To keep the program list clean there must be a way to filter invalid programs (with negative times and
stuff like that).

5. To prevent loss of programs in case of a server shutdown the program list must be written to disk.
6. To restore the program list when the server starts there must be a parser to parse a configuration file

back to a list.

9.2.2 Controlling of the radio device and the audio module
. There needs to be a set of functions to control the radio device.

. There needs to be a well-defined interface with the audio module.

1

2

3. There needs to be a function to get the next program.

4. The current program must be cancellable (for the users convenience).
5

. Programs need to have a way to indicate on which frequency they are broadcasted.

RiVo

9.3. Design 28

9.2.3 Storing the information about recordings

1. The list of audio files must be editable so programs can be added and removed.
2. Audio file descriptors must have the path of the corresponding audio file (to link the two together).
3. It must be possible to write the list of audio files to disk.

4. It must be possible to parse the written list back to a normal list.

9.3 Design

The module basically is divided in two main parts: The radio thread and the planner. The radio thread
controls the radio device and tells the audio module what to do. The planner handles the program lists
and the information about the recorded files. Problems during the implementation of the planner caused
a few changes in our original design. At first the idea was to let all the communication between the radio
thread and the planner go through a central data store, in this data store would be a combined list of periodic
programs and normal programs scheduled a day (or another period of time) ahead. The radio thread would
try to read the first program from the store and execute it. The planner would periodically add new programs
so the radio thread would never run out of work. That would be about all the communication there was
between the radio thread and the planner.

Radio device

Aud < @thread
S A

Central schedule

Cif > PIanner) .
U Disk storage

Figure 9.1: Original design of the planner module

At first this design seemed to be nice and modular, yet soon it posed a few big problems:

1. Programs could not be cancelled since there was no way the planner could tell this to the radio thread
(except by adding more lines of communication).

2. Storing periodic programs and normal programs in one data store (as normal programs) was very
memory inefficient, a periodic program with an indefinite number of periods would also require an
indefinite number of normal programs in the memory.

Looking at these problems we came to the conclusion that this strict separation between the radio thread
and the planner was not very useful. Therefore we removed the central schedule and replaced it by 2
separate data stores (for programs and periodic programs). In this design the radio thread would just ask
the planner for the next program if it needed a new one, in this way the radio would always get up-to-date

RiVo

9.4. Implementation 29

Radio device

Aud < Radio thread

7
Cif > Planner .
g ; Disk storage

Figure 9.2: Final design of the planner module

information. This would cause far less problems with updating the schedule and also made it a lot easier to
make programs cancellable.

9.4 Implementation

9.4.1 General implementation

The radio thread works quite simple, it is one simple loop of control which goes through the following
actions: it first asks the planner for the first program. If the planner returns an error (meaning there is no
first program) it waits to get signalled (the planner is responsible for this) until there is a first program.
If the planner returns a program the radio thread waits for the program to start. When the program starts
the thread sets all the devices and modules in the right state and waits for the program to end. When the
program ends the thread cleans every thing and goes back to the start. The radio thread also handles the
cancelling of programs.

The planner is a collection of functions that operate on a couple of data stores (linked lists). These
functions are mainly called from the control interface. The planner has the following data stores: A list of
channels, a list of normal programs, a list of periodic programs and a list of audio files. All the data stores
are (as told before) linked lists, this is useful because of their dynamic character, with array’s there would
be a maximum number of items which causes problem if the users for instance wants to add more channels
then the maximum number. This problem could be solved with arrays by making the arrays rather large, but
this is very memory inefficient. Therefore linked lists are the best option. Every data store has a few basic
functions which are not interesting to discuss in detail like the adding and removing of programs. The first
data store is used to save all the channels, in this program channels are structs with a couple of important
fields:

name to identify the channel in a way which is convenient for the user.

id to give the channel an unique identifier the program can look for.
frequency to tell the program which frequency the radio should be tuned to.
next_item this is the pointer to the next item in the list.

There are a couple of other fields but they are not used at this moment, they can be used in the future to add
extra features. None of the functions on this store are very interesting, it’s all rather trivial. The functions
on the list to store programs are more interesting, next to the trivial adding and removing of programs there

RiVo

9.4. Implementation 30

are functions to check conflicts with other programs. This poses some interesting mathematical problems
which will be discussed in the section "conflict checking". Much like the list of channels (and the other two
lists) the list of data stores consists out of structs. The structs in this list have the following important fields:

name is to identify the program in a user-friendly way.

description is to store additional data about the program.

start_time contains store the time the program starts (O if it should start immediately).
end_time stores the time the program should end (O if it continues indefinitely).
channel_id is to tell on which channel the program is.

live says if the program should play live.

record tells if the program should be stored on disk.

status is to check if the program is scheduled or running or other things like that.
next_item the same as in channel.

Storing periodic programs is highly similar to storing normal programs, a lot of functions on this store
however are far more complicated. The checking of conflicts between two periodic programs for instance
was one of the most challenging tasks in this module. The structs in this data store are almost the same to
the ones in the normal program list, except for a few fields to specify the periodic nature of these programs.
The fourth and last data store contains the descriptions of previously recorded programs. This is useful
for the users to find the files containing their favourite program, the names on the file system are not very
user-friendly. The structs in this list contains the following fields:

start_time contains the time the recording started (this can be a different value than the start_time of the
related program.

end_time contains the time the recording ended (this can also be a different value than the end_time of the
related program.).

channel_frequency tells on which frequency the radio was tuned during the recording of the program.
file_name locates the corresponding file on the file system.
next_item guess what...

The audio file struct also has some fields for future changes in the program.

9.4.2 Conflict checking

To make sure that all the users programs are handled in the right way programs should only be added if they
have no conflicts with other programs. Therefore there needs to be a conflict checker of some kind. In our
program there are 3 different types of conflicts which will all be discussed here.

1. Conflicts between two normal programs are rather easy to check, you just have to look at two start
times and two end times. At first we checked if there was a conflict by looking for overlapping
programs. If program A and B overlap one of the following statements is true: a. The start time of
A is between the start time and end time of B. b. The end time of A is between the start time and
end time of B. ¢. Program A is completely in program B’s time. Or d. program B is completely in
program A’s time. This check was not very hard to implement, but it was very ugly. It proved to be
a lot easier to just check if there is NO conflict. If two programs don’t conflict one of the following
statements is true: a. Program A ends before program B starts b. Program A starts after program B
ends. This check is a lot easier and if you negate it, it has the same result. This is the way normal
conflicts are checked.

RiVo

9.4. Implementation 31

2. A case which is somewhat harder to check is if a normal program has a conflict with a periodic
program. The easy way to do this would be to check for conflicts with every period of the periodic
program in the same way as you would check for a conflict between two normal programs. This
however is very inefficient and would even crash the program in case of a infinite periodic program.
A better way to check for conflicts would be to first check which periods could give a conflict and then
only run the check on these periods. The first period that could result in a conflict can be calculated
in this way: x=the start time of the normal program. y=the end time of the first period of the periodic
program. z=the period length of the periodic program.

r—y

= the first period in which a con flict could occur.

The last period that could result in a conflict can be calculated in a similar way. x=the end time of the
normal program. y=the start time of the first period of the periodic program. z=the period length of
the periodic program.

r—y
z

= the last period in which a con flict could occur.

This formula is explaind by the following timeline.

Normal program : I

Periodic program HEE I I i -

e Time till first possible overlap

Figure 9.3: Timeline to explain conflict checking

3. The third case is to check for conflicts between two periodic programs. This case is even harder
than the second case. Again you could just compare every instance of the first program with every
instance of the second, but this would give the same problems as before. Again we will handle this
more efficiently by defining the range in which a conflict could occur, this is somewhat harder then
the in the second case since both programs are periodic. This is how we solved this problem: Program
A has a repeating behaviour in period length A (and therefore also in every multiple of this length),
Program B has a repeating behaviour in period length B (and therefore also in every multiple of this
length). So if you look at the behaviour of the two programs together it is repeating in every period
with a length which is a multiple of period length A en period length B. The smallest of these lengths
is the "smallest common multiple” of A and B. So if there is a conflict between the two programs
it should occur in a period of this length. In this period you can just check all the instances of one
program for conflicts with the other program (in the same way as case 2).

In this way you can check for every possible conflict and thus you guarantee a feasible program.

9.4.3 Configuration files

To prevent the loss of data in case of a crash or a shutdown rivo stores the lists also as files on the hard
drive. These files are written according to a grammar so they can be parsed again. This was a part of
the implementation of the module that proved to take more time than expected. Designing the grammar

RiVo

9.5. Problems 32

was quite easy (see appendix B), but to parse the files back to a linked list took more time than expected.
It wasn’t really hard to figure out what the parser should do, but to get it done in ¢ was terrible, mainly
because ¢ handles strings "not really well" (understatement). To make the parser as reusable as possible the
parsing goes in two steps:

1. The pre-parser removes all the comments and white space and puts the remaining strings in a linked
list of "blocks". This part is reusable for all kinds of configuration files.

2. The final parser is to change the blocks into data the program can use (programs for instance).

Using this system of parsers it is possible to reload data stores when the system starts. To make sure that no
user programs are lost RiVo synchronizes the stores with disk if they are changed and reloads them when
the system starts. When the system starts RiVo removes all the programs which passed while the system
was down (it also removes the instances of periodic programs which passed). In this way RiVo tries to
execute the user commands as much as possible, even if the system has been down.

9.5 Problems

9.5.1 Periodic programs

The idea to have normal programs and periodic programs was nice in the users perspective, it could save
the user a lot of time. Implementing it however was a rather different case. The problems started with the
checking of conflicts between two periodic programs which is discussed in a previous part. The second
problem was this: If the user wants to see the schedule it would be logical if he gets the normal programs
and the instances of periodic programs, if he would want to remove a program however he wouldn’t be able
to remove all the programs, the instances of periodic programs are not removable by itself in our current
implementation. We thought of two ways to solve this problem:

1. When the user asks for the schedule the planner could change the first instances of the periodic
programs to normal programs so the user can operate on them like he would on normal programs (in
fact they are normal programs now). This solution however has a couple of drawbacks. When the
users removes a periodic program the parts which are stored as normal programs should be removed
too. This would request a link between normal programs and periodic programs. Another problem
is the fact that if the user would ask for a schedule far in the future all the instances of the periodic
programs would go to memory and this would cost a LOT of memory.

2. The second solution is to make a single instance of a periodic program removable in this way. If you
remove a instance of a periodic program you could split the original program in two parts around
the instance to remove, this would be a very memory efficient way and it wouldn’t require that
much changes in the implementation. Unfortunately we hadn’t enough time to do this, therefore
the problem is not solved in our current release.

9.6 Testing

The testing of the module was done in the following way: All the functions were reviewed, and tested so
that all the code was ran at least once (by testing the alternative of every if statement). This way proved
at least that the code was working on itself. Testing for deadlocks was a lot harder however, these only
occurred in special cases were the timing was just right. Since it is impossible to check every possible
state of the program we could only test for this by running the program thoroughly. Also we tried to avoid
complex deadlocks by keeping the synchronization in this module as easy as possible.

9.7 Planner

Though the planner works rather nice at this time there is a lot of space for improvement. The most
important thing is the problem discussed above, the removing of instances of periodic programs. But there
are more things. At this time all the configuration files are stored in our own file type with our functions.
It would be a lot of work to add functions to sort the data of search through the data. Therefore it might

RiVo

9.7. Planner 33

be a better solution to use an external database library to do these things. An other thing which was in the
original design but which is not yet implemented is this: At first we wanted the program to be able to go
though channel guides at its own, and record programs based on user profiles. Due to the lack of time and
the absence of online channel guides we were not able to implement this feature yet. The design and the
code however are based on the idea that this feature will be added so therefore it is possible to build in this
feature without big changes in the code.

RiVo

34

Chapter 10

The control interface module

10.1 Goal

CIF stands for *Control InterFace’. That describes the purpose of CIF nicely: providing an interface for the
world to control rivo.

10.2 Requirements
CIF module has the following requirements:
e accept client commands and parameters

execute internal rivo functions

report outcome of executions to the client

any inactive client should be disconnected

it should be possible to regularly send audio buffer information to the client

10.3 Design

The entire interface to rivo consists of 2 parts:
1. the control interface (cif, the part compiled into rivo)
2. the user interface (uif, the part which interacts directly with the user)

These two parts communicate over a standard tcp/ip-connection. Tcp/ip was an obvious choice due to
the widespread use and support of tcp/ip. This 2-part network design has several advantages:

e the user interface can be implemented in any language supporting tcp/ip connections. (PHP, Java,
Perl, C etc. etc.)

e the user interface can run stand alone; e.g. on a different operating system than rivo.
e it makes rivo always easy accessible.

With this design many different kinds of user interfaces are possible. Examples are CGI’s running on a
server, Java programs running locally and even using plain telnet as your user interface. This chapter will
only discuss the control interface module (cif). The user interface module (uif) will be discussed in the next
chapter.

RiVo

10.3. Design

35

Audio Module

Audio data
thread

Control-interface Module

Planner Module
A

Planne
commands
and replies

Y
start / stop

Command

Watchdog

thread

thread interrupt

comr
and replies

Network

Audio commangs
buffer| and repfles
data

HTML pdge

Network

Client Browser Y

A\
Client Java—applet HTML page

Figure 10.1: Interface design

10.3.1 Threading design

CIF has been designed as follows: there are 2 threads running continuously. We call them *command
thread” and "audio data thread’.

The command thread starts by waiting for a client to connect on its port. Once connected it will wait for
client input. When a client has sent input, it will parse the input and executes the appropriate internal rivo
functions. After that the outcome of the internal functions will be sent back to the client. Thus, the initiative
of communication always lies with the client. The command thread will not suddenly start sending data to
the client; only as a reply to a user action.

Since in the current design there is only one thread running to accept commands, only one client can be
handled at a time. This causes a necessity to keep the port to be free as much as possible: you don’t want
an inactive client to be connected forever and block the interface. This is why, once a client is connected,
another temporary thread is started: the watchdog thread. This watchdog thread makes sure that a client

RiVo

10.4. Implementation 36

gets disconnected, if it has been inactive for a certain period of time.

The second continuously running thread, audio data thread, also starts by waiting for a client to connect
on its port. Once connected this thread starts sending audio buffer information to the client. This thread
does not accept any client input whatsoever. Here, the initiative lies with the audio data thread.

The original idea was to start the audio data thread only once a client had sent such a command to the
command thread. Why keep this audio data thread running if you already got the command thread running
continuously?

The continuously running audio data thread doesn’t use processor time if it is listening on a port for
a connection. So the continuously running thread doesn’t spoil much more resources compared to the
dynamically started audio data thread. The dynamically started audio data thread however introduces the
need for extra commands in the command thread and thread-start/stop complexity. Also, clients that are
interested in audio data have to be more complex in case of the dynamically started audio data thread (they
first have to connect to the command thread, send the start audio data thread’-command and then connect
to the audio data thread. These disadvantages caused us to go with the continuously running audio data
thread.

10.4 Implementation
10.4.1 cif _init

The rivo main function launches the CIF module by calling cif_init with some parameters such as the
command thread port, audio data thread port and timeout length. These are copied internally in CIF for
further usages.

Next, CIF requests 2 sockets from the operating system. This is being done with the help of "sockLib’,
a socket handling library developed by dhr. Schoute and others at the University of Twente. If the socket
requests fail, cif_init aborts and returns an error value to the rivo main function.

Normally the socket requests succeed and CIF then starts the 2 threads. Both threads are accompanied
by a shutdown mutex. The shutdown mutex makes sure that the thread is in safe code, when it is going to
be stopped. As soon as the thread goes into code in which stopping would be unsafe, it locks the mutex.
The thread unlocks the mutex when it leaves the unsafe code.

10.4.2 cif close

When the rivo main function calls the cif_close function, the following procedure is executed for both
threads: the close function tries to get a lock on the shutdown mutex. Once this lock is acquired, the thread
has apparently released the mutex and thus is in a state in which it can safely be stopped.

After that a cancel signal is sent to the thread. The close function waits for the thread to die by joining
the cancelled thread. Now we can be sure the thread has safely been closed.

Once both threads have been stopped by this procedure their sockets are returned and the shutdown
mutexes destroyed.

10.4.3 The command thread

The command thread begins by setting its cancel reaction to asynchronous. Asynchronous cancelling would
be unsafe, so we make the cancelling synchronous by using our own shutdown mutex as explained above.
We do not use the provided synchronous cancelling because it works by completely enabling or disabling
cancelling. This way, a cancel signal will get lost when the thread has disabled cancelling and thus the
thread would keep on running. This is not what we want, so we use the shutdown mutex; a lock on this
mutex never gets lost.

After handling cancel reaction, the command thread starts a loop in which it listens on the given port
for a connection. This is also being done with help of *sockLib’. If it can’t start listening on the given port,
the loop will be aborted. Another reason to abort this listen loop is the shutdown command from the user.
When the listen loop has been left, the rivo main shutdown mutex is being unlocked, causing the rivo main
to wake up and shutdown the whole program.

RiVo

10.4. Implementation 37

10.4.4 Client handling

Inside the listen loop client handling is being done by a separate handle client function. This function
consists of the following loop:

e write a standard prompt to the client

start watchdog thread

read all client input

stop watchdog thread (if it is still alive)

parse input and execute it

report execution outcome to the client
e end with ok- or error-message.

This loop continues until the client enters the abort command or the connection has been lost.

The prompt is very important for the client because once a prompt occurred, the client knows it has
received all output from the previous command and can start sending a new command.

The watchdog thread only lives when the command thread is being blocked by the read system call
(inside cif_read). If this read call takes longer than a given period of time, the watchdog thread wakes up
and closes the connection. This forces the read system call to return and stop blocking command thread.
The command thread detects an error and stops handling the client immediately.

While the client input is being parsed and executed, functions from the planner and audio module are
called. It would be very unsafe to stop the command thread while it is executing a planner- or audio-
function. This is why the shutdown mutex gets locked before parsing and executing and is released after.

The final ok- or error-message is for consistency. Every output from parsing and executing the client
command ends with one of both. After this the prompt occurs. This way, the client can always check for an
error by simply parsing the line before the prompt.

10.4.5 cif_read and cif_write

For easy and consistent communication with the client, we’ve made cif_read and cif_write. These functions
wrap around the read and write system call.

The ordinary read system call requires a fixed size buffer to store its data in. However, the client input
might exceed this buffer size. For example: when adding a new periodic program. The add command and
all the data in the fields of the new periodic program need to be sent to the server. This command and its
parameters could very well be longer than read expected. Data exceeding the buffer size will arrive at a
next read system call (and then be interpreted as a new command).

The function cif_read has to prevent this. It does so by collecting client input, until an end-of-line
character has been received. The collecting consists of calling the read system call, creating a new and
bigger buffer if necessary, copying old data and newly read data into the new buffer and checking for the
end-of-line character. If the end-of-line character doesn’t appear the collecting continues. Eventually the
entire client input buffer is being returned.

Cif_write has currently only debugging purposes but could later be used for same purposes as cif_read.

10.4.6 Command handling

After reading, the command thread parses the client input. Client input is always parsed as a command with
zero or more parameters. The command can of course be unknown. The list of possible commands is given
in appendix C.

The command is separated from the arguments with a mark character. This mark character also separates
arguments from each other. A parameter however, could contain the mark character as an ordinary character
(for example, the user just wants the mark character in the name field). In this case the mark character should
be escaped.

RiVo

10.5. Problems 38

This can’t be done with the mark character itself because it would cause a symmetry problem: what
would a string of 3 mark characters mean? It could be: escaped mark character followed by a real mark
character or the other way around. Therefore we need another special character: the escape mark character.
This character escapes the normal mark character. Now the symmetry problem is solved because the escape
mark character isn’t the same as the mark character and thus escaping can be distinguished from separation.
The escape mark character can safely be escaped with itself. A single escape mark character escapes
something; a double escape mark character is an escaped escape mark character.

The adding and removing of mark characters and escape mark characters is called stuffing and destuff-
ing. Everything that cif needs to send to the client is being stuffed first and then packed together with mark
characters between the parameters. Everything cif gets from the client will be broken into parameters and
then destuffed. To save processor time stuffing and destuffing is only applied to parameters that represent
strings such as name and description. For parameters representing integers it would be pointless (unless
you pick a number as mark character).

The parsed input will be compared against all known commands until the corresponding command is
found; if no command is found, the command thread will send a unknown command’-error to the client.
If the corresponding command is found, the appropriate execution will follow. This consists of a simple
syntax check on the parameters and some planner- or audio-function calls. The outcome will be sent back
to the client.

10.4.7 The audio data thread

Cancelling in the audio data thread is handled exactly the same way as in the command thread. Next, the
audio data thread starts a loop in which it listens for client connections (also the same as the command thread
does). Once a client is connected, the audio data thread starts sending audio data on a regular interval. It
gets this data by calling functions from the audio module. Just before calling these functions the shutdown
mutex is lock again and released after the function calls returned; again to make cancelling this thread safe.

10.5 Problems

In the current cif design there are a few problems:

1. The currently used socket library doesn’t have enough functionality. This problem manifested itself
first when we wanted to print the ip-address of the client to the debug output. We expected the library
to be capable of handling this but unfortunately it did not. The alternative is to search for a more
advanced socket handling library and start using that.

2. Security checks are not present. The focus of this project was on functionality; therefore security has
not been taken into account.

3. Only one client can be handled at a time. Since usually only one tuner is available per server, making
rivo completely multi-user would not be a huge advantage. For this reason we decided to stay single-
user and put more time in other aspects.

4. Currently the watchdog thread gets started and stopped a lot. It would probably be more efficient to
start the thread once and let it switch between 2 states: ’counting down the timeout’ and waiting to
start count down’.

10.6 Testing

Testing of this module happened by using Linux telnet. We opened a telnet connection to the server and
tried all commands with different kinds of parameters.

10.7 Future

One of the first things that will be fixed in this module, is security. Although this might make things a
little more complicated for the user interface we believe it is a very important issue. We can achieve this

RiVo

10.7. Future 39

by calling a username/password verification function before the client handling function is called. More
security can be achieved by checking the ip-address of the client against a given list of allowed ip-addresses
(for example in a configuration file).

Although rivo will probably not get multi-user in the near future, handling multiple clients does have
its advantages. Currently, clients are put in a queue if they connect while there is already a client being
serviced. However, it could be that some client only wants to get informed. Read-only commands like that
could safely be handled simultaneous.

This got us to the idea to split the command thread into 2 threads

1. an information providing thread (read-only commands)
2. an information accepting thread (write commands)

The threads would be running continuously and listening on separate ports. The first thread only pro-
vides information about rivo. For each connecting client it starts a new thread, so rivo can handle multiple
clients with read-only-commands simultaneously. It doesn’t need very strict security regulations since only
read commands can be executed. If the connected user interface supports it, the client handling thread could
also use push-technology (suddenly sending updated information to the client). The audio data thread can
then be replaced by this information providing thread.

The second thread accepts the write commands. It has very strict security measures and is only capable
of handling one client at a time.

The disadvantage of this separation is that the client side gets more complex: it has to decide which port
to use for which commands. However more clients can be handled, security can be more precise and push
technology can be used.

RiVo

40

Chapter 11

The user interface module

11.1 Goal

Provide a nice user interface for rivo.

11.2 Requirements

e convert user actions into control interface commands
e send these commands to rivo

e give a comprehensible overview of the status of rivo

11.3 Design

Although many different user interfaces are possible, we decided to implement one design: a cgi/html-
server combination. This design has one big advantage: it is very well supported on different systems:
every computer with an Internet connection and a browser will be able to use it. The disadvantage is that
HTML does not support push technology. So it is not possible to suddenly update the user interface because
of a spontaneous action within rivo. (Of course there are workarounds for this problem but that would cause
incompatibilities between different browsers.)

Concretely, the cgi/html-server combination comes down to the following procedure: the user points
his browser to the web server containing the cgi-programs. The web server runs the cgi-program and that
cgi-program interacts with rivo. The outcome of the conversation with rivo results in a HTML-page. The
web server then sends this HTML-page back to the users browser. All user actions will follow the this
route: browser sends information to the web server, passed on to the appropriate cgi-program, resulting in
a HTML-page, which is then sent back to the user.

11.4 Implementation

To implement this design the following components are necessary:
1. aweb server, able to run external programs

2. the cgi-programs

11.4.1 The web server

For the web server we picked Apache. This was the easiest choice, since Apache was already installed and
running happily on our server. The only thing we had to do, was to add an entry to Apaches configuration
file for our directory containing user interface files. This entry makes sure the directory is served with the
correct permissions.

RiVo

11.4. Implementation 41

11.4.2 CGlI-programming language

The cgi-programs could have been written in a many languages (like PHP, Perl, Java etc.) but we chose ¢
again. This was for several reasons:

Speed: Other common cgi languages (PHP, Perl etc.) are often interpreted and thus slower.

Compatibility with web servers: Many web servers are by default able to execute compiled ¢ programs.
Executing PHP programs requires a PHP-module, which is not yet very standardized.

Code reuse: In the cgi-programs many problems from cif reoccur. C solutions for this, can be reused.
This happened for problems like stuffing/de-stuffing, sending/receiving strings, breaking input into
parameters, converting time strings to absolute seconds and back, etc.

Definition reuse: Some header files from cif could be used. For example the list of commands is defined
only once: in the cif header file. The cgi-programs use these (and others) directly.

Of course there were also disadvantages of using c:

String manipulation: In ¢ string manipulation has to be done very carefully. In languages like Perl and
PHP this can be done much easier.

Less standard functions are available: Things like finding a specific line in a file needs more code in ¢
than in Perl or PHP.

11.4.3 CGlI-program internals

Any cgi-program begins by parsing the ’action’ variable. This variable determines what must be done by
the cgi. It is set by the browser, depending on the user action. If the action variable has not been set at all,
the cgi reverts to showing a standard overview.

For example, when the user clicks on ’edit’, the action variable will be set to ’edit’. The cgi-program
detects this and thus generates the edit form with the correct input fields. When the editing is finished, the
user clicks on *done’, which sets the action variable to something like ’edit_done’. This causes the cgi to
parse all input fields and send edit commands to rivo.

The controlling cgi-programs like radio, wave player and buffer control are a little more complex.
Before reacting on the action variable, they ask rivo for the current state. Depending on that state, the
appropriate commands are send to the server. After sending commands, the complete rivo state is asked
again and based on the state a HTML-page is generated . For example, when the action is ’start_recording’
it first checks if there is a program running. If so, then that program should also be recorded. If there is
currently no program running, a new program will be added, with the record variable set to "yes’.

Before displaying output, any cgi-program will read a given HTML file. This HTML file contains plain
HTML code and a special mark tag somewhere between HTML code. Everything before the mark tag will
be read and send to the user. When the mark tag appears, it is replaced by the cgi output. When the cgi
output is finished, the rest of the file is read and send to the user.

This enables us to separate dynamic html-code as much as possible from the static html code. The file
containing the static html code can be changed in any way, without the cgi-program having to know about
it. This gives great flexibility over website design. No need to recompile cgi’s if you only wanted to change
font size, background colour, screen layout etc. Only if you want to change table layout, the cgi-program
should be adjusted.

11.4.4 Used libraries

The user sets some variables inside the browser by performing actions on the site. The web server receives
the variables from the browser. To get these variables inside the cgi-program we’ve used ’libcgi’. This
library provides standard functions to implement cgi-programs in c.

For exchanging information with rivo we’ve made our own library. This is called ’uif_cif_lib’. It pro-
vides a send_to_server’ function, which accepts a string (the command that must be sent to rivo) and returns
an array of strings (each line that rivo gave as reply). Everything else, such as opening the connection, writ-
ing, reading, etc. is handled by this lib. Calling ’send_to_server’ a lot of times doesn’t make it inefficient:
the first time it opens a new connection to rivo; after that it remains logged in in rivo for as long as the cgi
is running.

RiVo

11.5. Problems 42

11.4.5 Configuration file

The send_to_server command has 2 more important parameters: hostname and port. These parameters
are always provided by the cgi-program. In the current implementation each cgi-program reads a simple
configuration file containing the hostname and port. These settings are then used. The advantage is that
their value can be changed at runtime. Suddenly using another server or another port is now possible.

The configuration file contains one other entry: the applet port. The cgi-program that generates the page
with the applet on it (buffer control) uses this parameter to direct the applet to the correct server and ports.

11.4.6 safe_html

Using HTML as design language in combination with the possibility of entering any data you like in the data
fields, poses us for a small problem: what happens if the user, accidentally or not, enters HTML commands
into a data field? That would cause corruptions in the resulting HTML-pages.

This problem is solved by checking newly entered data for HTML tags like <, > and ". These are
replaced by text equivalents (like "&It", ">" and ""™). Browsers will then show these text equivalents
as the original characters but will not interpret them.

11.5 Problems

In the current implementation of the *radio control’ cgi-program we have chosen to use multiple buttons for
submitting a single form. The form contains the selected channel; the button tells which action should be
taken (start live, start recording, pause etc.) However it appeared that at least one browser is not capable of
handling this kind of form (Pocket Internet Explorer, running on Windows CE on the Compaq iPAQ). This
should of course be fixed.

Currently the user interface uses 2 frames: the upper frame to show information about channels, plan-
ning, periodic planning, audio files and preferences. The lower frame to show the radio control, wave player
control and buffer control. Splitting up the screen allows to control rivo faster (for example, on one screen,
you can control the radio while you are editing a channel) but tends to use more space. For systems with
small screens this might become a problem. Another problem is that on a user action only one of both parts
gets updated. This means you can get annoying inconsistencies like this: you removed a channel in the
upper part of the screen but in the lower part, you can still select that channel in ’radio control’.

11.6 Testing

Testing has been done by trying out all the options. More systematic testing has been done in the testing
period of the entire rivo system.

11.7 Future

The problems caused by using frames really need to be fixed. The best solution is to stop using frames
anymore. This will make the user interface more straight forward and consistent.

As always with user interfaces: they can be nicer :) More pictures, different colors, better layout etc. It
would be nice to start using Cascaded Style Sheets in the static HTML files. CSS allows for more control
over the website design and thus nicer designs.

When the control interface (cif) gets stricter security measures, the user interfaces have to follow. This
means for the current user interface that the library that takes care of the connection, probably has to
be extended with username/password negotiation. However, it would be quite un-user-friendly to require
entering username/password every time a cgi-program is launched. To solve such a problem, we could start
using sessions or save the username/password in hidden input fields in the HTML-pages.

RiVo

43

Chapter 12

The Buffer Control Applet

121 Goal

Provide the user with a way to control the live-buffer

12.2 Requirements

The applet has to work in all java-enabled browsers. The user should be able to wind, to rewind and to
pause/resume in a convenient way.

12.3 Design
RivoGUI
1
1 01 !
1
RivoBufferBar
RivoApplet RivoApplication
1
0.1
1
1 1
RivoControl
1 1
T
RivoCommandInterface 1

RivolnputSystem

Figure 12.1: Applet design

There are 5 important classes in this design:

RiVo

12.4. Implementation 44

RivoBufferBar: This is an awt gui component that extends Canvas. It displays the current status of the
buffer. It also handles mouseclicks.

RivoGUI: This is an awt gui component that extends Panel. It has 2 buttons: pause and resume. It also
displays the RivoBufferBar.

RivoControl: This is a class that glues the gui component and the network code together. It passes com-
mands from the RivoGUI to the RivoCommandInterface and it passes buffer updates from the Rivoln-
putSystem to the RivoGUI.

RivoCommandInterface: This is a class that sends commands to the rivo server and returns the result.
RivolnputSystem: This is the class that continuously receives updates about the status of the live-buffer.

There are 2 other classes (RivoApplet and RivoApplication) that actually "wrap" the other components in
an applet or in an application.

12.4 Implementation

The applet has to run in all java-enabled browsers. Because there are a lot of different browsers and a lot
of different Java virtual machines, we had to look for a Java version that is supported by all common Java
VMs. This was java 1.1 . We only used Classes/Methods from the java 1.1 APl and with a little tweaking it
finally worked in all java enable browsers.

125 Problems

There were some problems caused by incompatibilities between browsers. For example: it is in the java
standard that when a browser leaves the web page, the destroy() method of the applet is called, but Netscape
4.7 for Linux doesn’t.

Another problem is that when the applet is started when another applet is running, the second applet
crashes. This is because the applet tries to connect to the applet-port of the server, but that port is already
in use. The applet doesn’t get a "Connection Refused" but is waits until it can connect.

12.6 Testing

We didn’t bother to test the applet very thorough, we simply ran it to see if it worked or not.

12.7 Future

The design is very modularised, so if in the future the network-protocols change, only 1 or 2 classes have
to be changed. It is also possible to make another gui with fancy animations or whatever people like.

RiVo

45

Chapter 13

Testing

During implementation, of course we ran some tests to see if the code worked. However, testing in a more
structured way is necessary. In this section we will describe how we tested the system as a whole and we
will explain why we did it that way.

The individual modules were tested in an early phase by the implementer itself. Generally, this wasn’t
done in a very structured way, but the obvious bugs were found and fixed. This procedure tests the operation
of the application as a whole.

We used the web-interface to test rivo and not the telnet-interface, because the telnet-interface is part
of the internal implementation of the system and users usually won’t use that interface at all. The interface
that is meant to be used directly by humans is the web-interface and this needed to be tested, too. The web-
interface relies completely on the telnet-interface and if there is a bug in the server we will see it anyway.
Of course this makes bug searching / bug fixing a little harder, but in practice we haven’t had any problems
with that.

In some test cases we deliberately tried make the program crash. In these cases we opened 2 browser
windows to the rivo interface, in order to call the cgi programs with incorrect or inconsistent parameters.

Before we ran the tests, we set up quite a lot of test cases. We did these tests and attached a label
"passed" or "failed" to it. If the test failed, we wrote down what happened and if a fix was required or not.
Later on we checked the problems again to see if they were fixed properly.

In the appendix the complete test cases can be found.

RiVo

46

Chapter 14

Future options

In the future some things can be added/modified to the program. In this chapter these ideas are written
down. Some of them are more realistic than others, but theoretically they are possible.

1.

© g &~ w DN

The configuration files can be integrated in the web interface. Then the user can control everything
in the web interface.

More options in the configuration file (like bit rate).

Plugins for radio guides (the plugin system is already there).

User profiles. So that the system can plan for itself according to the profiles.

More output plugins, like ogg encoded out, encoded file writing and for other applications.

A variable user interface, adjusted to the right environment. A special interface for every circum-
stance, optimised for i.e. flash, VRML, text based browsers, handheld devices.

A user interface that has all the functions in one application, i.e. the mp3 player, buffer control,
planning etc.

A live buffer that can process video data (i.e. from a TV card). So that tv can have the same conve-
nience of rivo.

Support for multiple radio cards

RiVo

47

Chapter 15

Review

An important final action in a project like this is to review the project to spot flaws in the product. Also the
requirements are reviewed and we analyse which are not met and for what reason. In this chapter we will
do these reviews.

15.1 Requirementsreview
15.1.1 Recording

The first requirement was about recording, the program should be able to record at a desired time on a
desired channel. This requirement is met. The required functionality is implemented and there even are
some extra, user friendly, features like the downloading of audio files and the possibility of adding so called
"periodic programs" these are programs that repeat itself periodically which is useful if the user often wants
to record a program at the same time.

15.1.2 Playing

The second requirement was about the playing of audio files. All the recordings should be offered to the
user for playing. This requirement is not entirely met. The requirement document mentions rewinding
and forwarding. These functions are not implemented because of the following reason: The audio module
which would be responsible for this function uses a plugin system. Though this system makes the module
very dynamic it also constrains the capabilities on a couple of fronts. To implement rewinding and forward-
ing a lot of functionality should be added to all the plugins and there was no time to do this. The other
requirements like pause and resume however are fully implemented.

15.1.3 Listening to the radio

Pausing and resuming live radio broadcasts also was one of the demands. This requirement is perfectly
fulfilled by the audio module, not only is it possible to pause and resume, it is also possible to fast forward
and rewind through the buffered audio data.

15.1.4 User interface

The requirements about the user interface also are met for the most important part. It is a web interface
so the user can access it from almost everywhere with his favourite browser. The parsing of radio guides
however is not implemented for a couple of reasons:

1. We were not able to find parsable radio guides, this made it almost impossible to implement and
therefore the requirement was not realisable. We tried to contact the NOS about this point, but the
only answer we got was that they were legally not allowed to give that information to 3th parties
(which seems very odd since they also put it on the internet in a non parsable way).

RiVo

15.2. Hardware requirements 48

2. We ran out of time and had to make concessions. To compensate for the absence of the feature we
did the following thing: we put links to the websites of the channels in the user interface so the user
himself can look for radio guides.

15.1.5 User profiles

There is not very much to say about this requirement, the only part that is met is "keep it simple"”, we
sure did. Since there were no online radio guides to parse and we ran out of time this requirement isn’t
implemented at all. The planner module however is constructed with the idea that this feature will be added
later so adding this won’t require lost of changes.

15.2 Hardwarerequirements

These requirements are mainly related to the mp3 encoding, because that part requires much cpu time:

We tested rivo on a p2 233 MHz with 64 mb memory. With the best quality (44 kHz,2 channels,16 bits, 128
kbps) the cpu usage was 80% and a load average of 1.00. With these settings the audio doesn’t malfunction.
With 2 channels,16 bits, 128 kbps and 22 kHz, the cpu usage was 30% and with a load average of 0.4.
These readings make clear that a p266 with 64 mb memory can handle the encoding good. The rest of the
program (without the encoding of mp3) uses less than 1% of the cpu and about 2% of the memory. That
means rivo (without streaming) can run on a far less capable computer.

15.3 Irregular period lengths

Although periodic planning is a nice feature to have, it presented us with a small problem: is it possible
to use irregular period lengths? For example, months or years; these can not be converted to seconds
since it differs from month to month and year to year. This is a shortcoming of our design, however it is
very unlikely to be useful. That is because if a radio broadcast would be monthly, each time it would be
broadcasted on a different day of the week. Planned broadcastings like this are highly unlikely.

15.4 PDA rivo control

Listening to rivo and controlling it via a pda was an extra challenge. We tried to make the pda work with
our program, but we had 2 problems:

1. Some generated HTML-pages are not compatible with Pocket Internet Explorer.
2. The mp3 streaming didn’t work, although the streaming of static files with icecast did work.

These problems weren’t solved, since time forced us to focus on more important issues. However, the
encountered problems can be solved in the near future.

155 Safety

Since this product has a web interface and therefore is accessible all over the world safety is a important
point of consideration. Although it has no built in security measures we tried to keep this product as safe as
possible. We avoided common vulnerabilities like buffer overflows by using strncpy instead of strcpy and
prevented pointers from pointing to strange points in memory by using calloc instead of malloc. But still a
good firewall to restrict the use of this program to trusted clients is advised. (disclaimer blablabla).

15.6 Stability

Unlike some commercial corporations we won’t name here, we think that it is important that programs
don’t crash all the time. To accomplish this we tried to keep the synchronisation as simple as possible to
avoid deadlocks and we ran tests on the program for long periods of time to find all bugs. Finally we think

RiVo

15.6. Stability 49

that our program is rather stable when used in normal ways, there are however a couple of ways to tease the
program into bad behaviour. The first way is by using the two possible ways of control at the same time.
In the telnet interface you can add programs that have a somewhat negative impact on the web interfaces
performance (adding a program named "</table></html>" will most certainly give a undesired effect). The
second way is by manually editing the configfiles with faulty data, this also will certainly give unexpected
results. Both cases however will not happen with normal use, so only if someone wants the program to do
strange things this will happen. And even then the program only does what the user wants (meaning: it acts
strange), so it is very user friendly.

Overall we think that, although some requirements are not met, our product is as good as we could make
it in this time. 1f we would do such a project again we would certainly be able to create a better product,
but that is because we learned a great deal during this project.

RiVo

50

Chapter 16

Teamwork

16.1 Our method

Our method of teamwork is, to thoroughly discuss all the problems/difficulties and to have everything at
one point. This is because then we are at one line with our thoughts. This method is found back in several
decisions:

1. There is one place where we keep our source code, documents and other project related stuff (i.e.
links). To make this happen, we chose for CVS.

2. We have documents and functions for the debug standard, code layout standard, document layout
standard, makefile standard, plugin standard and a minutes standard. This is to keep everything
uniform.

Furthermore we scheduled everything (with some space for delay) from the beginning, to keep a tight
schedule. In this way we didn’t lose control of the situation. We used milestones like feature freeze and
code freeze to realise this. The planning can be viewed at D. We kept minutes for every appointment we
had with each other and our accompanists. These came in handy as to support our memory.

16.2 Softwaretools

We used several software tools for testing, constructing our project.
1. For testing the web interface we used: konqueror, netscape, mozilla, internet explorer, w3m and links.
2. For testing the streamer we used: mpg123, xmms, sonique and winamp

3. For constructing our project we used: gcc, make, cvs, lame, icecast, apache and several libraries (i.e.
libshout and stdlib).

16.3 Team setup

In the beginning of the project we divided the responsibilities for a clear division. The following modules
were given to the following people:

1. (aud) Jeroen: Module with the name audio, responsible for:

(a) Reading the radio card.
(b) Buffering.
(c) Delivering the audio data at the right places.

2. (pIn) Ardjan: Module with the name planner, responsible for:

(a) Managing the radio card.

RiVo

16.4. Conclusion 51

(b) Collecting and processing radio-information.
(c) Managing profiles.
(d) Planning, starting and stopping of recordings.

3. (str) Barry: Module with the name streamer, responsible for:

(a) On-the-fly compression of audio data.
(b) Delivering the audio data to clients over a network.

4. (cif) Matthijs: Module with the name control-interface, responsible for:

(a) The interaction with the user over a network.
(b) Interpreting user commands and sending the interpreted commands to other modules.
(c) flexible UI.

There was also an organizational division. The following tasks were assigned to the named people:
1. Barry Nijenhuis: secretary.
2. Matthijs van der Kooij: chairman.
3. Ardjan Zwartjes: document manager (CVS, user-accounts) and document standards.
4. Jeroen Soesbergen: coding standards (code, remarks, debug-output, etc.).

These divisions were made in good deliberation with each other, so that everyone did his job with reasonable
pleasure. We had a meeting every Monday, Tuesday and Thursday with each other to keep close contact.
Some weeks we had more meetings, because there was more to discuss, but the basic meetings were every
week. Of almost every meeting we have minutes, because if we didn’t used them, we were bound to forget
things. We also had a weekly meeting with our accompanists (Jansen and Scholten) to discuss our progress,
problems and decisions. Every member of the group kept a log to write down idea’s, bugs, etc. This was to
recollect everything that had been done between the meetings.

16.4 Conclusion

The teamwork in our group went well. We had regular discussions about al kinds of things, but in the end
we always came to an agreement. The mood was always serious, but also relaxed. This was because we
know each other well.

We learned that a positive attitude is the best way to cope with setbacks. Even when there seems to be
no progression.

RiVo

52

Appendix A

Test report

RiVo

53

Appendix B

Configuration file grammar

RiVo

54

Appendix C

Cif protocol

RiVo

55

Appendix D

Planning

RiVo

56

Appendix E

Installation guide

RiVo

